Tetrahedron Letters No. 20, pp 1743 - 1746, 1977. Pergamon Press. Printed in Great Britain.

CONFORMATIONAL ANALYSIS OF SEVEN-MEMBERED RING SULFITE MOLECULES

H. Faucher **. A. Guimaraes * and J.B. Robert **

Département de Recherche Fondamentale, Laboratoire de Chimie Organique Physique, Centre d'Etudes Nucléaires, 85 X, F.38041 GRENOBLE CEDEX, France.

(Received in UK 28 February 1977; accepted for publication 4 April 1977)

In the last few years, considerable efforts have been directed toward elucidating the stereochemistry of five and six-membered ring sulfites. For ethylene sulfite in solution, n m r work based on a detailed analysis of vicinal coupling suggests the existence of twist-envelope forms which interconvert rapidely on the n m r time scale (1). For the six-membered ring, trimethylene sulfite both solid state (2) and solution studies (3) give evidence for a ring chair conformation with an axial S=0 bond. The axial S=0 bond is quoted to be $14.7 \pm 4 \text{ kJ}$ mol⁻¹ more stable than the equatorial (4).

In line with our interest on the stereochemistry of seven membered-ring heterocyclic molecules (5)(6), we wish to report here preliminary results which give some insight on the stereochemistry of sulfites molecules 1, 2, 3 which, to our knowledge, have not been studied

up to date. Sulfites $\frac{1}{2}$, $\frac{2}{2}$ and $\frac{3}{2}$ have been prepared according to standard procedures (7). An additional interest in choosing the three skeletons corresponding to molecules $\frac{1}{2}$, $\frac{2}{2}$ and $\frac{3}{2}$, comes from conformational flexibility which have been reported on analogous 1,3-heterocyclic seven membered-rings (8)(9).

The 1 H and 13 C n m r spectra of the three sulfites 1, 2 and 3 have been recorded at room temperature. The spectral parameters which can be obtained are listed in Table 1.

For compound 1, the signal corresponding to protons attached to carbons 5 and 6 is highly degenerate and it has not been possible to obtain the ${}^{3}J(HH)$ ring proton couplings which would be of great help for conformational analysis. By homonuclear decoupling, the C4C7 protons system shows a simple AB spectrum (${}^{2}J(HH) = -12.3 Hz$). For compounds 2 and 3, the methylene protons show essentially an AB system with an additional triplet fine structure for sulfite 2 as due to the coupling with the ethylene protons.

The room temperature proton n m r spectra are compatible with a Cs symmetry chair or boat conformations (S=0 bond axial or equatorial) or rapidly interconverting on the n m r time scale twist conformation.

In lowering the temperature down to -120° C, the ¹H n m r spectrum of sulfite <u>2</u> remains essentially unchanged albeit broadened at lower temperature by increasing viscosity. Conversely, the ¹H n m r spectrum of <u>3</u> shows significant changes on lowering the temperature. The lines of the AB system observed at room temperature broaden and eventually resolve in two AB systems (Figure) at -86°C. Such a modification of the n m r spectrum clearly indicates that, at room temperature, sulfite <u>3</u> exists as a mixture of at least two conformations.

^(*) On leave of absence from Minas Gerais University (Brazil)

^(**) Faculty members of the Université Scientifique et Médicale de Grenoble.

. Compounds	^H 4,7	^H 4',7'	Chemical ^H 5,6	shifts * ^H 5',6'	^C 4,7	^C 5,6	² J(H _{4,4'})
○ S=0 <u>1</u>	4.17	3.60	1.42	1.42	64.1	28.5	-12.3
○S=0 <u>2</u>	5.00	4.46	5.81	-	60.2	128.6	-14.0
S=0 ≟	5.61	4.06	-	-	62.7	128.2	-14.0

Table 1 : ¹H and ¹³C parameters of sulfites 1, 2 and 3

* The proton n m r spectra were recorded in toluene, the chemical shifts are in ppm downfield from TMS. The 13 C n m r spectra were recorded in chloroform, the chemical shift are in ppm downfield from TMS.

A second piece of information from conformational analysis of sulfites $\frac{1}{2}$, $\frac{2}{2}$ and $\frac{3}{2}$ can be obtained from infra-red study.

Two different v(S=0) stretching frequencies at 1190 cm⁻¹ and at 1230 cm⁻¹ have been reported for the two diastereomers of 2-t-Butyl trimethylene sulfites (3a) and assigned to the axial (1190 cm⁻¹) and equatorial (1230 cm⁻¹) orientation of the S=0 group. Since then a considerable body of work has been directed toward the stereochemical dependence of the v(S=0) stretching frequency in six-membered ring sulfites (3d)(4)(10)(11). A rationale of the frequencies observed has been proposed as shown in Table 2 (12). We shall assume that only slight changes take place in v(S=0) stretching frequency in going from a six to a sevenmembered ring. Indeed, very small changes are observed in the v(C=0) stretching frequency when the ring size increases in cyclic ketones (13).

Table 2 : v(S=0) stretching frequency in six-membered ring sulfites,"a"refers to an axial orientation and "e" to an equatorial of the S=0 group in a chair conformation of the ring. "i" refers to a twist conformation.

		ccı ₄	CH3CN	۵ν(CC1 ₄ -CH ₃ CN)	
v(S0 _a)	cm ⁻¹	1193.5 + 3.5	1186. <u>+</u> 4.	7.5	
ν(S0 _i)	cm ⁻¹	1124. <u>+</u> 2.	1211. <u>+</u> 3.	13.	
v(S0_)	cm ⁻¹	1245. <u>+</u> 2.	1226. <u>+</u> 2.5	19.	

The infra-red spectra of sulfites $\frac{1}{2}$, $\frac{2}{2}$ and $\frac{3}{2}$ were recorded in two different solvents (CCl₄ and CH₃CN). The absorption frequencies present in the 1000-1400 cm⁻¹ region have been assigned to³ the S=0 stretching frequency and are reported in table 3.

The v(S=0) values shown in tables 2 and 3 and the differences observed by change of solvent are best interpreted in assigning the (1220-1214 cm⁻¹) frequency in CCl₄ to a twist conformation and the lower frequency (1184 cm⁻¹) to an axially oriented S=0⁴ group.

As a boat conformation with an axially oriented S=0 bond seems to be very unlikely, sulfite $\underline{3}$ should exhibit a twist-chair equilibrium at room temperature, sulfite $\underline{2}$ will be in a predominantly twist conformation, and sulfite $\underline{1}$ in a chair conformation. The above conclusions are entirely consistent with the low temperature n m r observation performed on sulfites $\underline{2}$ and $\underline{3}$.

<u>Figure</u> : ¹H n m r spectrum of the methylene protons of sulfite $\underline{3}$, at room temperature (1 AB system), at low temperature (2 AB systems).

The peak areas corresponding to the low temperature spectra of the two AB systems observed in sulfite 3 correspond to a 5:2 ratio. The largest $\delta(AB)$ chemical shift difference observed in the predominant species strongly suggests that it corresponds to the chair conformation. Thus the ΔG difference between the chair and the twist conformation, taking into account the presence of two equivalent chair conformations is calculated to be 0.100 kJ_mol^1. A d n m r study of the variable temperature process observed in sulfite 3 gives a ΔG value of 2.42 kJ mol⁻¹ at -74°C for the chair to twist equilibrium.

Further studies on the stereochemistry of substitued seven-membered ring sulfites are now in progress.

References

- (1) C.H. GREEN and D.G. HELLIER, J. Chem. Soc. Perkin II, 190 (1975); G.W. BUCHANAN and D.G. HELLIER, Can. J. Chem., 54, 1428 (1976).
- (2) C. ALTONA, H.J. GEISE and C. ROMERS, Rec. Trav. chim. Pays-Bas, 85, 1197 (1966).
- (3) a) D.G. HELLIER, J.G. TILLETT, H.F. van WOERDEN and R.F.M. WHITE, Chem. & Ind., 1956 (1963); b) R.S. EDMUNDSON, Tetrahedron Lett., 1649 (1965); c) Yu. Yu. SAMITOV, Dokl. Akad. Nauk. SSSR, 164, 347 (1965); d) C.H. GREEN and D.G. HELLIER, J. Chem. Soc. Perkin II, 458 (1972); e) P. ALBRIKSTEN, Acta Chem. Scand., 25, 478 (1971); *ibid.* 26, 1783 (1972); *ibid.* 26, 3678 (1972); f) L. CAZAUX, G. CHASSAING and P. MARONI, Org. Magn. Res., 8, 461 (1976).
- (4) H.F. van WOERDEN and E. HAVINGA, Rec. Trav. Chim. Pays-Bas, 86, 341 (1967).
- (5) A.C. GUIMARAES and J.B. ROBERT, Tetrahedron Lett., 473 (1976).
- (6) J.P. DUTASTA, A.C. GUIMARAES and J.B. ROBERT, Tetrahedron Lett., in the press.
- (7) A.H. BLATT, Organic Syntheses, Collective volume 2, p. 112, John Miley and Sons, New York (1943).
- (8) H. FRIEBOLIN, R. MECKE, S. KABUSS and A. LUTTRINGHAUS, Tetrahedron Lett., 1929 (1964).
- (9) M.H. GIANNI, J. SAAVEDRA and J. SAVOY, J. Org. Chem., 38, 3971 (1973); M.H. GIANNI, J. SAAVEDRA, J. SAVOY and H.G. KUIVILA, *ibid.*, 39, 804 (1974); M.H. GIANNI, M. ADAMS, H.G. KUIVILA and K. WURSTHORN, *ibid.*, 40, 450 (1975).
- (10) P. MARONI and L. CAZAUX, C.R. Acad. Sciences, <u>272</u>, 1660 (1971); <u>272</u>, 2065 (1971); <u>273</u>, 156 (1972).
- (11) L. CAZAUX, Thesis, Toulouse (1967).
- (12) G. CHASSAING, Thesis, Toulouse (1976).
- (13) V. PRELOG, J. Chem. Soc., 420 (1950).